viernes, 12 de noviembre de 2010

ejemplos de derivada direccional

ejemplos derivada direccional

derivada direccional


En el análisis matemático, la derivada direccional de una función multivariable sobre un vector dado, representa la tasa de cambio (pendiente) de la función en la dirección de dicho vector. Este concepto generaliza a las derivadas parciales, ya que estas son derivadas direccionales en los vectores paralelos a los ejes.


domingo, 7 de noviembre de 2010

regla de la cadena


En calcula, la regla de la cadena es una fórmula para la derivada de la composición de dos funciones. Tiene aplicaciones en el cálculo algebraico de derivadas cuando existe composición de funciones.
Descripción de la regla
En términos intuitivos, si una variable y, depende de una segunda variable u, que a la vez depende de una tercera variable x; entonces, la razón de cambio de y con respecto a x puede ser computado como el producto de la razón de cambio de y con respecto a u multiplicado por la razón de cambio de u con respecto a x.

viernes, 10 de septiembre de 2010

definicion

Funciones Parametricas

FUNCIONES EXPRESADAS EN FORMA PARAMETRICA
Una representación parametrica frecuentemente puede constituir  la regla de correspondencia de una función .
Las ecuaciones x= cosq;y =2 senq,en las que q es el parámetro, corresponden a la elipse de la ecuación cartesiana.
x2/9 + y2/4 =1
desde luego en estas ecuaciones ecuaciones definen multiforme en el intervalo abierto –3< x <3,que puede descomponerse en las dos siguientes funciones:
f1=í(x,y)ï x= 3 cos q, y=  2sen q, -3< x < 3, y>0ý
f2=í(x,y) ê x= 3 cos q ,y= 2 senq ,-3 < x <3,  y <0ý
Una aplicación útil de las representaciones parametricas se presenta en problemas de movimiento curvilíneo donde comúnmente se considera que (x,y)son las coordenadas cartesianas del punto “x”.

viernes, 3 de septiembre de 2010

definicion producto vectorial

Definición 

Sean dos vectores a y b en el espacio vectorial ?3. El producto vectorial entre a y b, como se mencionó antes, da como resultado un nuevo vector, al que llamaremos c. Para definir este nuevo vector es necesario especificar su módulo, dirección y sentido:
  • El módulo de c está dado por
\\\\\\\\left \\\\\\\\Vert \\\\\\\\mathbf{c} \\\\\\\\right \\\\\\\\Vert = \\\\\\\\left \\\\\\\\Vert \\\\\\\\mathbf{a} \\\\\\\\right \\\\\\\\Vert \\\\\\\\left \\\\\\\\Vert \\\\\\\\mathbf{b} \\\\\\\\right \\\\\\\\Vert \\\\\\\\sin{\\\\\\\\theta}
 
donde ? es el ángulo entre a y b.
  • La dirección de c es tal que c es ortogonal a a y ortogonal a b.
  • El sentido en el que apunta el vector c está dado por la regla del sacacorchos.
El producto vectorial entre a y b se denota mediante a × b, por ello se lo llama también producto cruz. Para evitar confusiones con la letra x, algun
 
os autores denotan el producto vectorial mediante a ? b cuando escriben a mano.
El producto vectorial puede definirse de una manera más compacta de la siguiente manera:
\\\\\\\\mathbf{a} \\\\\\\\times \\\\\\\\mathbf{b} = \\\\\\\\hat n \\\\\\\\left \\\\\\\\Vert \\\\\\\\mathbf{a} \\\\\\\\right \\\\\\\\Vert \\\\\\\\left \\\\\\\\Vert \\\\\\\\mathbf{b} \\\\\\\\right \\\\\\\\Vert \\\\\\\\sin{\\\\\\\\theta} donde \\\\\\\\hat n es e
 
l versor ortogonal a los vectores a y b y su sentido está dado por la regla del sacacorchos y ? es, como antes, el ángulo entre a y b. A la regla del sacacorchos se la llama a menudo también regla de la mano derecha.